
マイページに作品情報をお届け!
実践Data Scienceシリーズ RとStanではじめる ベイズ統計モデリングによるデータ分析入門
ジッセンデータサイエンスシリーズアールトスタンデハジメルベイズトウケイモデリングニヨルデータブンセキニュウモン
- 著: 馬場 真哉
「基本をより実践的に!」学べる新シリーズの第一弾は、「統計モデリングの世界」へのファーストブック。基礎から学べる超入門!
・チュートリアル形式だから、すぐに実践できる!
・統計、確率、ベイズ推論、MCMCの基本事項から、やさしくサポート!
・brmsやbayesplotなどのパッケージの使い方も、しっかり身につく!
・一般化線形モデル(GLM)→一般化線形混合モデル(GLMM)→動的線形モデル(DLM)→動的一般化線形モデル(DGLM)を体系的に学べる!
【本書のサポートページ】
https://logics-of-blue.com/r-stan-bayesian-model-intro-book-support/
【実践Data Scienceシリーズ】
「基本をより実践的に!」を合言葉に、データサイエンスで用いられる各種手法の基本を、プログラミングの実装とともに解説していきます。はじめて学ぶ大学生、大学院生、ソフトウェアエンジニアに向けた注目の新シリーズです。
【主な内容】
1部 【理論編】ベイズ統計モデリングの基本
1 はじめよう! ベイズ統計モデリング
2 統計学の基本
3 確率の基本
4 確率分布の基本
5 統計モデルの基本
6 ベイズ推論の基本
7 MCMCの基本
2部 【基礎編】RとStanによるデータ分析
1 Rの基本
2 データの要約
3 ggplot2によるデータの可視化
4 Stanの基本
5 MCMCの結果の評価
6 Stanコーディングの詳細
3部 【実践編】一般化線形モデル
1 一般化線形モデルの基本
2 単回帰モデル
3 モデルを用いた予測
4 デザイン行列を用いた一般化線形モデルの推定
5 brmsの使い方
6 ダミー変数と分散分析モデル
7 正規線形モデル
8 ポアソン回帰モデル
9 ロジスティック回帰モデル
10 交互作用
4部 【応用編】一般化線形混合モデル
1 階層ベイズモデルと一般化線形混合モデルの基本
2 ランダム切片モデル
3 ランダム係数モデル
5部 【応用編】状態空間モデル
1 時系列分析と状態空間モデルの基本
2 ローカルレベルモデル
3 状態空間モデルによる予測と補間
4 時変係数モデル
5 トレンドの構造
6 周期性のモデル化
7 自己回帰モデルとその周辺
8 動的一般化線形モデル:二項分布を仮定した例
9 動的一般化線形モデル:ポアソン分布を仮定した例
Ⓒ馬場真哉
- 前巻
- 次巻
オンライン書店で購入する
目次
第1部 【理論編】ベイズ統計モデリングの基本
第1章 はじめよう! ベイズ統計モデリング
第2章 統計学の基本
第3章 確率の基本
第4章 確率分布の基本
第5章 統計モデルの基本
第6章 ベイズ推論の基本
第7章 MCMCの基本
第2部 【基礎編】RとStanによるデータ分析
第1章 Rの基本
第2章 データの要約
第3章 ggplot2によるデータの可視化
第4章 Stanの基本
第5章 MCMCの結果の評価
第6章 Stanコーディングの詳細
第3部 【実践編】一般化線形モデル
第1章 一般化線形モデルの基本
第2章 単回帰モデル
第3章 モデルを用いた予測
第4章 デザイン行列を用いた一般化線形モデルの推定
第5章 brmsの使い方
第6章 ダミー変数と分散分析モデル
第7章 正規線形モデル
第8章 ポアソン回帰モデル
第9章 ロジスティック回帰モデル
第10章 交互作用
第4部 【応用編】一般化線形混合モデル
第1章 階層ベイズモデルと一般化線形混合モデルの基本
第2章 ランダム切片モデル
第3章 ランダム係数モデル
第5部 【応用編】状態空間モデル
第1章 時系列分析と状態空間モデルの基本
第2章 ローカルレベルモデル
第3章 状態空間モデルによる予測と補間
第4章 時変係数モデル
第5章 トレンドの構造
第6章 周期性のモデル化
第7章 自己回帰モデルとその周辺
第8章 動的一般化線形モデル:二項分布を仮定した例
第9章 動的一般化線形モデル:ポアソン分布を仮定した例
書誌情報
紙版
発売日
2019年07月10日
ISBN
9784065165362
判型
B5変型
価格
定価:3,300円(本体3,000円)
ページ数
352ページ
電子版
発売日
2019年08月23日
JDCN
06A0000000000144812R
著者紹介
Logics of Blue(https://logics-of-blue.com/)というWebサイトの管理人 著 書『平均・分散から始める一般化線形モデル入門』(プレアデス出版,2015年) 『時系列分析と状態空間モデルの基礎:RとStanで学ぶ理論と実装』(プレアデス出版,2018年) 『Pythonで学ぶあたらしい統計学の教科書』(翔泳社,2018年)
オンライン書店一覧
関連シリーズ
-
ソフトウェアの挑戦
-
Pythonではじめる時系列分析入門
-
プログラミング〈新〉作法
-
Polarsとpandasで学ぶ データ処理アイデアレシピ55
-
RustによるWebアプリケーション開発
-
ゼロから学ぶGit/GitHub
-
Pythonでスラスラわかる ベイズ推論「超」入門
-
Juliaプログラミング大全
-
Kaggleに挑む深層学習プログラミングの極意
-
ゼロから学ぶRust
-
ROS2とPythonで作って学ぶAIロボット入門
-
Pythonではじめるベイズ機械学習入門
-
Rではじめる地理空間データの統計解析入門
-
ゼロからはじめるデータサイエンス入門
-
Pythonではじめるテキストアナリティクス入門
-
Python数値計算プログラミング
-
1週間で学べる!Julia数値計算プログラミング
-
問題解決力を鍛える!アルゴリズムとデータ構造
-
ゼロからつくるPython機械学習プログラミング入門
-
これからのロボットプログラミング入門
-
モンテカルロ統計計算
-
スパース回帰分析とパターン認識
-
Rで学ぶ統計的データ解析
-
ゼロから学ぶPythonプログラミング
-
Pythonで学ぶアルゴリズムとデータ構造
-
PythonではじめるKaggleスタートブック
-
最適化手法入門
-
データ分析のためのデータ可視化入門
-
ProcessingによるCGとメディアアート
-
入門者のPython
-
Web学習アプリ対応 C言語入門
-
ホログラフィ入門
-
pixivエンジニアが教えるプログラミング入門
-
使える! MATLAB/Simulinkプログラミング
-
最新 使える!MATLAB
-
今日から使える! MATLAB 数値計算から古典制御まで
-
OpenCVによる画像処理入門
-
OpenCVによるコンピュータビジョン・機械学習入門
-
LabVIEW画像計測入門
-
IDLプログラミング入門―基本概念から3次元グラフィックス
-
GPUプログラミング入門 -CUDA5による実装