
マイページに作品情報をお届け!
ベイズ深層学習
ベイズシンソウガクシュウ
- 著: 須山 敦志
「読んでいて本当に心地がいい」と大好評の前著『ベイズ推論による機械学習入門』からの第2弾!
「深層学習とベイズ統計の融合」がすべて詰まった 「欲張り」本!
基礎からはじめ、深層生成モデルやガウス過程とのつながりまでをていねいに解説した。本邦初の成書!
本書のサポートページ:
https://github.com/sammy-suyama/BayesianDeepLearningBook
【主な内容】
第1章 はじめに
1.1 ベイズ統計とニューラルネットワークの変遷
1.2 ベイズ深層学習
第2章 ニューラルネットワークの基礎
2.1 線形回帰モデル
2.2 ニューラルネットワーク
2.3 効率的な学習法
2.4 ニューラルネットワークの拡張モデル
第3章 ベイズ推論の基礎
3.1 確率推論
3.2 指数型分布族
3.3 ベイズ線形回帰
3.4 最尤推定,MAP推定との関係
第4章 近似ベイズ推論
4.1 サンプリングに基づく推論手法
4.2 最適化に基づく推論手法
第5章 ニューラルネットワークのベイズ推論
5.1 ベイズニューラルネットワークモデルの近似推論法
5.2 近似ベイズ推論の効率化
5.3 ベイズ推論と確率的正則化
5.4 不確実性の推定を使った応用
第6章 深層生成モデル
6.1 変分自己符号化器
6.2 変分モデル
6.3 生成ネットワークの構造学習
6.4 その他の深層生成モデル
第7章 深層学習とガウス過程
7.1 ガウス過程の基礎
7.2 ガウス過程による分類
7.3 ガウス過程のスパース近似
7.4 深層学習のガウス過程解釈
7.5 ガウス過程による生成モデル
Ⓒ須山敦志
- 前巻
- 次巻
オンライン書店で購入する
目次
第1章 はじめに
1.1 ベイズ統計とニューラルネットワークの変遷
1.2 ベイズ深層学習
第2章 ニューラルネットワークの基礎
2.1 線形回帰モデル
2.2 ニューラルネットワーク
2.3 効率的な学習法
2.4 ニューラルネットワークの拡張モデル
第3章 ベイズ推論の基礎
3.1 確率推論
3.2 指数型分布族
3.3 ベイズ線形回帰
3.4 最尤推定,MAP推定との関係
第4章 近似ベイズ推論
4.1 サンプリングに基づく推論手法
4.2 最適化に基づく推論手法
第5章 ニューラルネットワークのベイズ推論
5.1 ベイズニューラルネットワークモデルの近似推論法
5.2 近似ベイズ推論の効率化
5.3 ベイズ推論と確率的正則化
5.4 不確実性の推定を使った応用
第6章 深層生成モデル
6.1 変分自己符号化器
6.2 変分モデル
6.3 生成ネットワークの構造学習
6.4 その他の深層生成モデル
第7章 深層学習とガウス過程
7.1 ガウス過程の基礎
7.2 ガウス過程による分類
7.3 ガウス過程のスパース近似
7.4 深層学習のガウス過程解釈
7.5 ガウス過程による生成モデル
書誌情報
紙版
発売日
2019年08月08日
ISBN
9784065168707
判型
A5
価格
定価:3,300円(本体3,000円)
ページ数
312ページ
シリーズ
機械学習プロフェッショナルシリーズ
電子版
発売日
2019年10月11日
JDCN
06A0000000000153741W
著者紹介
2009年 東京工業大学工学部情報工学科卒業 2011年 東京大学大学院情報工学研究科博士前期課程修了 国内メーカーの研究職、UKのベンチャー企業の研究職を経て、現在はデータ解析に関するコンサルティングに従事。 ブログ「作って遊ぶ機械学習。」にて実践的な機械学習技術に関する情報を発信中。 twitter ID:@sammy_suyama 著書:『ベイズ推論による機械学習入門』講談社
オンライン書店一覧
関連シリーズ
-
ヒューリスティック探索
-
コンピュータとネットワーク
-
ことばの意味を計算するしくみ
-
データサイエンスはじめの一歩
-
アジャイルデータモデリング
-
応用基礎としてのデータサイエンス
-
詳解 3次元点群処理
-
入門講義 量子コンピュータ
-
現場で活用するための機械学習エンジニアリング
-
Juliaで作って学ぶベイズ統計学
-
はじめての機械学習
-
ディープラーニング 学習する機械
-
マスターアルゴリズム 世界を再構築する「究極の機械学習」
-
教養としてのデータサイエンス
-
これならわかる機械学習入門
-
しっかり学ぶ数理最適化
-
データサイエンスのためのデータベース
-
テキスト・画像・音声データ分析
-
Pythonで学ぶ実験計画法入門 ベイズ最適化によるデータ解析
-
絵でわかるネットワーク
-
転移学習
-
統計モデルと推測
-
絵でわかるサイバーセキュリティ
-
データサイエンスの基礎
-
スタンフォード ベクトル・行列からはじめる最適化数学
-
Pythonで学ぶ強化学習
-
コンパクトデータ構造
-
Raspberry Piではじめる機械学習
-
ベイズ推論による機械学習入門
-
これならわかる深層学習入門
-
情報メディア論
-
イラストで学ぶディープラーニング
-
今度こそわかる量子コンピューター
-
絵でわかるスーパーコンピュータ
-
イラストで学ぶ 機械学習 最小二乗法による識別モデル学習
-
イラストで学ぶ 音声認識
-
イラストで学ぶ ヒューマンインタフェース